![]() |
Twin Primes |
Here the infinite product is the twin prime constant (estimated by Wrench and others to be approximately 0.6601618158...), and we introduce an integral to improve the quality of the estimate. This estimate works quite well! For example:![]()
N | actual | estimate |
---|---|---|
106 | 8169 | 8248 |
108 | 440312 | 440368 |
1010 | 27412679 | 27411417 |
There is a longer table by Kutnib and Richstein available online.
In 1919 Brun showed that the sum of the reciprocals of the twin primes converges to a sum now called Brun's Constant. (Recall that the sum of the reciprocals of all primes diverges.) By calculating the twin primes up to 1014 (and discovering the infamous pentium bug along the way), Thomas Nicely heuristically estimates Brun's constant to be 1.902160578.
As an exercise you might want to prove the following version of Wilson's theorem.
4[(n-1)!+1] ≡ -n (mod n(n+2)).
rank prime digits who when comment 1 2996863034895 · 21290000 - 1 388342 L2035 Sep 2016 Twin (p) 2 3756801695685 · 2666669 - 1 200700 L1921 Dec 2011 Twin (p) 3 65516468355 · 2333333 - 1 100355 L923 Aug 2009 Twin (p) 4 160204065 · 2262148 - 1 78923 L5115 Jul 2021 Twin (p) 5 12770275971 · 2222225 - 1 66907 L527 Jul 2017 Twin (p) 6 12599682117 · 2211088 - 1 63554 L4166 Feb 2022 Twin (p) 7 12566577633 · 2211088 - 1 63554 L4166 Feb 2022 Twin (p) 8 70965694293 · 2200006 - 1 60219 L95 Apr 2016 Twin (p) 9 66444866235 · 2200003 - 1 60218 L95 Apr 2016 Twin (p) 10 4884940623 · 2198800 - 1 59855 L4166 Jul 2015 Twin (p) 11 2003663613 · 2195000 - 1 58711 L202 Jan 2007 Twin (p) 12 17976255129 · 2183241 - 1 55172 p415 May 2021 Twin (p) 13 191547657 · 2173372 - 1 52199 L5116 Jul 2020 Twin (p) 14 38529154785 · 2173250 - 1 52165 L3494 Jul 2014 Twin (p) 15 194772106074315 · 2171960 - 1 51780 x24 Jun 2007 Twin (p) 16 100314512544015 · 2171960 - 1 51780 x24 Jun 2006 Twin (p) 17 16869987339975 · 2171960 - 1 51779 x24 Sep 2005 Twin (p) 18 33218925 · 2169690 - 1 51090 g259 Sep 2002 Twin (p) 19 110427610 · 3100003 - 1 47722 p415 Feb 2021 Twin (p) 20 3706785456 · 1342069 - 1 46873 p412 Sep 2020 Twin (p)
- Forbes97
- T. Forbes, "A large pair of twin primes," Math. Comp., 66 (1997) 451-455. MR 97c:11111
Abstract: We describe an efficient integer squaring algorithm (involving the fast Fourier transform modulo F8) that was used on a 486 computer to discover a large pair of twin primes.[The twin primes 6797727 · 215328± 1 are found on a 486 microcomputer]- IJ96
- K. Indlekofer and A. Járai, "Largest known twin primes," Math. Comp., 65 (1996) 427-428. MR 96d:11009
Abstract: The numbers 697053813 · 216352± 1 are twin primes.- PSZ90
- B. K. Parady, J. F. Smith and S. E. Zarantonello, "Largest known twin primes," Math. Comp., 55 (1990) 381-382. MR 90j:11013